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1. INTRODUCTION
The Bernstein operators B,: [0, 1] — %[0, 1] are defined by

(10 =Y ()= —orrr(5)  (resi0 1k xer0,1).

k=0

Throughout this paper, let (k,)..y be a sequence of natural numbers. We
investigate the limit behaviour of the sequence (BZr),,. of powers of Bernstein
operators. Using Hilbert space methods, we give an explicit formula for
lim,,_., BXf, provided lim,,,(k,/n) exists and f is smooth, ie., /" € %0, 1]
The limits of the eigenfunctions of B,, prove to be the indefinite integrals
of Legendre polynomials. For the cases lim,,.(k,/n) = 0 and lim,, . .(k,[n) =
co, we shall give theorems of Voronovskaja type. Since our work depends
fundamentally on a work of Kelisky and Rivlin [2], we summarize their
main results in the next section.

We shall use the following notation: N denotes the set of all natural
numbers, Ny = N U {0}. The space of all continuous real-valued functions
on the closed interval [0, 1], resp. k-times continuously differentiable real-
valued functions on [0, 1], is denoted by %[0, 1], resp. [0, 1]. For each
s e N, #,is the space of all real polynomials of degree s and £ the subspace
of all p e 2, with p(0) = 0; similarly & is the space of all real polynomials
and 2, the subspace of all p € Z with p(0) = 0. We consider these polynomial
spaces as subspaces of [0, 1]. For se€ Ny, e, is the monomial eyx) = x*.
| - lle will denote the supremum norm on %[0, 1} and || - ||, the norm on the
function spaces Z,[0, 1] (p ='1). The norms of operators on these spaces
will be denoted by the same symbols.
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2. MAmx ResuLts oF KELISKY AND RIvLIN [2]

Let seN be fixed. Since B,pe &, for all pe P, and B,(f; 0) = f(0)
for all fe %[0, 11, we can interpret each B, as a linear map B,: Z— P, .
Forje{l,..., s} one obtains B,(e; ; X) = ay(m)x + ax;(n) x> + - + a;(n) x7
with

a;(n) = my(n) n*~ioy for i<},
=0 » for i>}j,
7(n) =1 for i=1,
1 2 i—1 .
S R A
L (=1 i .
of = X () (FELTRE)

(Stirling numbers of the second kind).

The associated s X s matrix A(rn) with elements a;(n) is upper triangular.
In the following, we shall only consider indices n» with » > 5. Then A(n)
possesses the eigenvalues 7, (n) (i = 1,...,5) and can be diagonalized. Let
V(n)—with elements v;{(n)—be the s X s matrix of eigenvectors with the
standardization v,;(n) =1 (= 1,...,s). Also V(n) is upper triangular.
Kelisky and Rivlin showed that the V(n) converge, and calculated the limit
matrix. A slight transformation of the original Kelisky and Rivlin formula

yields
J—=I\(J
(1))
2j — 2
(GZ)
For each n > s, to the eigenvectors (v,;(n), v9;(n),..., vs;(1))t there correspond

polynomials p;, € #;, (j = 1,..., s) which are eigenfunctions of B, and for
which therefore the following relation holds:

im vyy(n) = (=1 G je{l,, shi <))

Bppin == Pin for j=1,

= (1 _}1)(1 -—%) (1 _J ; ! )pm for j=2,.,s.

&)
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For each j € {1,..., s}, the coefficients of p;, converge (as » — o) to the cosre-
sponding coefficients of the polynomial p; , where

: =0
pAx) = ¥, (1) ﬁ—;’—i)—z(iz x @

= (}J: i)

(in what follows, the expression “coefficientwise convergent” and the denota-
tion “lim,, . Py = p;” will be used).

3. ASYMPTOTIC BEHAVIOUR OF Bfsp FOR POLYNOMIALS p

Throughout this section, let p e &, be a given polynomial, say p(x) =
i1 axt, of degree s. There are unique representations p = Y, b;,Psm
and p = }:;1 b;p; with coefficients b;, and b;. Again for all occurring
indices n, we assume the restriction n > 5. The application of Bl» yields

Ep

Bﬁ”p = b1nP1n + bon (1 - %)knpzn + ban (1 - %)k"(l - g) Pan

kp

T Y\ (- T I

For our further investigation we need two lemmas.

Levma 1.

() by, = by = p(1) and py,, = p, = e, for each n = s;
(i) limy.e b, = b; for each je{2,..., s}.

Proof. (i) Since we chose the standardization v;(kr) = 1, there holds
DPin = p1 = e; . From (1) and the relation B,{(f; 1) = f(1) for all fe %[0, 1],
it follows that p;,(1) =p(1} =0 for je{2,..., s}, and therefore b, =
it biain(l) = p(1) = T bipi(1) = by -

(ii) Since p; and p;, have leading coefficients 1, p = Y, bp, —
351 binDin implies b, = b, for all n > 5. Now let be k€ {l,.., s — 1}, and
suppose the convergence lim,,.., b;, = b; is known for all je{k + 1,..., sh
To establish lim,,_, by, = b, consider the relation E;’;l (B;ip; ~— Binpin) =
E;k 11 Bsnpsn — bip;). The right side converges coefficientwise to the zero
polynomial. Hence, in particular the leading coefficient on the left side
converges to zero, i.e., lim, ..(by — bz,) = 0. J
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Lemma 2. Suppose (kp)uen IS a sequence of natural numbers with
limy, ,o(k,/n) = 0. Then for each I e N, | = 2, we have

i (- (-3 (-5 = ()

Proof. The assertion can be reduced to

kn

1}3&’1?{(1”%) —l%z—m for each meN,

which is verified by using standard techniques of mathematical analysis. The
details are left to the reader.

The following proposition is a straightforward consequence of (1), (3),
and Lemmas 1 and 2.

PROPOSITION 1. Let p be the given polynomial and (k,)nen a sequence of
natural numbers.

() In the case lim,,_(k./n) = 0 we have
lgg anp = bipy + byps + -+ -+ byps = p. “ .

As to the degree of approximation we obtain

lim 2 (B — p) = lim g 3; by (BiPyo, — Pyo)
=y (4) b,
= =3 (3) b )

(ii) In the case lim, . (k,/n) = o© we have
lim Bi'p = byp, = p() e, . ©®)

As to the degree of approximation we obtain

: Iy :
lim (l — E) {Bsnp - 1P1} = bzpz . . )

n->wo

(iii) In the case lim,. .. (k,/m) = qe(0, ) using the abbreviations
Ej:= e UV (j = 1,..., 5) we have

}EE B;Lc"p = bipy + Ebyp, + -+ + ESbyp, . (8)
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In this case a simple result concerning the degree of approximation seems to be
impossible.

In the next section we answer the question, how do the coefficients 5,
depend on the given function p?

4. THE ASSOCIATED HILBERT SPACE 53

Let o5 denote the space of all absolutely continuous real-valued functions
on [0, 1] with f(0) =0 and f' e,%[O il. For f, ge 3% define {f, g) :=
fof O g'@)dt and || flz:= (fof (£)2 dt)'2. Obviously ¢-, -> is an inner
product on %, and thereby &£, becomes a real Hilbert space with norm
-1z (% 1is closely related to a certain Sobolev space). Using Holder’s
inequality we get

[fl < f: [f'Oldt <[ fllsx*®  (xe€[0,1]) ©

and therefore || £, < | f|z for all fe ;. Hence on 5% the Hilbert space
topology is finer than the topology of uniform convergence. On 5%, the norms
Nfle =11f"lla and [|fll; := || fllo +If" [l are equivalent; more exactly we
have 311 £l <||flls < |IfIs for all fe 55, a simple conclusion from (9).
Since the polynomials are dense in %[0, 1], %, is a dense subset of the
Hilbert space 45 .
Now for je N we define polynomials f; by

L 1 2j — 1
ﬁ-um( j )l’j, {10y

where p; as in (2). For j € N, let g; denote the Legendre polynomial of degree
7 on the interval [0, 1].
PROPOSITION 2.
() {f;|je N} is acomplete orthonormal set in H# ;
Gy fi(x) = [o gi_1(t)dt for all je N.
Proof. For j > 2, we use the representation
filx) = )H—l (2] - 1})), 2 (9‘—2)(x) an

with the auxiliary function h,(x) (x(1 — x)¥-%. Then (i) ensues by standard
arguments, and (ii) is obvious, when we emphasize (i} and the definition of
Legendre polynomials. §
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Thus each fe 5 admits an expansion f = X, <f, /> f;, and by the
above remarks we infer that this expansion is also valid with respect to the
supremum norm on %[0, 1]. For polynomials p € #Z,, from (10) and the
representation p = Z;=1 {p, fi>f; we get an explicit formula for the coeffi-
cients b; of Section 3:

2 —1

b= (77 s [ oo 1)

Inserting in Proposition 1 yields new formulations for (5) resp. (7), which are
marked with (5) resp. (7).
In the case lim,,_(k,/n) = 0, we have

lim =~ {Bl'p — p} = 4P, )
where
Ao(p; x) 1= $x(1 — x) p"(x).
In the case lim,, . (k,/n) = oo, we have

__kn

fim (1= 3) 7 (B — p( e} < 4,, %)

n->0
where

1
An(p; %) 1= %x(l — %) gsj (1 — 20) p'(e) dt!.
0
(5") follows from (10), (1) and the relation

x(1— ) hPx) =j0 =2 x) (=2,

whereas (7') is immediate. Interpreting the Bernstein operators as linear
operators B,: #; — 3, , we are interested in the associated operator norm,
which will be denoted by || B, ||z -

ProroSITION 3. For all k, ne N, we have || B,* |l = 1.

Proof. We use the Kantorovic operators P,: %[0, 1] — Z£J0, 1]
(p = 1; ne N,) defined by

(k+1)/(n+1)

P(f;x):=(n-+1) i (Z) X1 — x)n~7cf

=0 %/ (n+1)

(fe %00, 1]; x €0, 1]).

J(@)de
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The following facts are known (cf. Lorentz [3, p. 30]): For f'e £,[0, 1] with
F(x) := [o f(t) dt, the relation

PAfid) = BunF0)  (ED0, 1]

holds true, and for the operator norms we have
1 Puily <1 forall neNg,p = 1.

Thus for functions feJs with || flly =1/ . <1, we get || B.flz =
IBof)Y lls =1l Pucaf " lls <"l =1 £l < 1, which implies [| B,* [l < 1.
The converse inequality follows from B,e, == e; and | ey |z = 1. §

The main theorem of this section comprises a result about the covergence
of the sequence (BZErf),.n for functions f'e 54 . As in Proposition 1, we shail
use the abbreviations E; = ¢V (je N), and for g == oo, we set £;2 1= 1
if j =1 and E;*:= 0 otherwise. In Theorem 1 all occurring convergence
relations are to be understood with respect to the norm || - |5 .

THEOREM 1.

For each q € [0, o],
BoSf =) EXLf i (fedty) (3
j=1

is a linear bounded operator, B,. Hp— Ky, with | Ly llz = 1. If (kp)uen 5 @
sequence of natural numbers with im,,_.(k,/n) = g, then for each fe H#5 we
have lim,, ., Bi»f = B, f.

Proof. Let q€[0, o] and let (k,),.n be a sequence of nataral numbers
with lim,,_.(k,/n) = ¢. By Proposition 1, for each fe &, say, fe @, , the
sequence (B¥f),y in P, is coefficient-wise convergent, and hence converges
mn the norm on 35 . %, is a dense subspace of 55, and on account of the
above proposition, the norms || B% |, are uniformly bounded by 1. Hence,
the Banach-Steinhaus theorem ensures the existence of a linear bounded
operator #,: #y — Hy with || B, || <1, such that lim,. . Bi+f = %,7.
Byey = e; and || e, |z = 1 imply | 4, |l = 1. By virtue of the boundedness of
B, , for each f = Y ,{f, fiv f; € # we obtain Z,f = 55 {f, f;» B,.f; , and
(13) follows from Proposition 1. Finally we note that %, f is independent of
the special choice of the sequence (k,)nen - §

About ten years ago, Karlin and Ziegler [1], Michelli [4], and Schnabl [6]
gave the analogous theorem with respect to the uniform topology on [0, 1].
They proved the existence of linear operators . ¢[0, 1] — [0, 1]
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(g €10, ]) with || o7, ||, = 1 such that the following holds: For each se-
quence (k,),eny Of natural numbers with lim, . (k./%) = g and for each
S %0, 1], Bi+f uniformly convergences to .o, f (as n — co). But in contrast
to (13), the operators &7, are not available (cf. another representation given
by Karlin and Ziegler [1, p. 324]). Only for the cases ¢ = 0 and ¢ = oo one
has %, = I (identity operator) by Korovkin’s theorem and .7, = B; by an
analogous theorem due to Karlin and Ziegler ([1, Theorem 1]; cf. Sect. 5).

1llustrating this more exactly, let f be absolutely continuous and smooth,
ie., f e %[0, 1]. Applying (13) to the function g :=f — B, fe€ ¥}, we get
lim,,.... Bing = 31, { g, f;> E;%f; , which is valid with respect to the uniform
topology on %[0, 1] as well. Since BE+f = B, f+ Blsg, calculating the coeffi-
cients < g, f;>, we obtain with respect to the uniform topology on %[0, 1]

lim 87 = B,/ 3. £ | 11O + 1) = FO) = FOU @) e} ;.
(14)

i.e., both sides are uniformly convergent and coincide. Although the deriva-
tive f* does not appear on the right side of (14), the assumption ' € 4]0, 1]
is still necessary for the validity of this equation, as the following considera-
tion, for the case ¢ = 0, will show.

For each meN, let T,, be the linear operator T,,: %[0, 1] — €[00, 1]
defined by T, f:= B, f and

Tof i Bof + 3 |[ L) + 17 ) = 1O) — SO0} i on =),

Obviously, each T, is bounded with respect to the uniform topology on
%[0, 1]. By the above remarks, one readily shows that each T, is a projection
Tp: €10, 1] — £, . Hence, by the Kharshiladze~Lozinski tkeorem we infer
that there exists a function f* € %[0, 1] for which 7,,f* is unbounded, i.e.,
for which the right side of (14) is unbounded, whereas on the left side
lim, .., Binf* = f* still holds true.

5. QUANTITATIVE RESULTS FOR THE CASES lim,,.., (k,/n) = 0 AND
lim,, o (ku/n) = o0

We first consider the case lim,,_(k,./n) = 0, which comprises the classical
case k, = 1. Applying Korovkin’s theorem with the test set {e,, e, , ez},
one obtains for all f& €[0, 1] lim,,_.., Birf = f uniformly on [0, 1].

Fstimates for the quality of the approximation BZ+f— f follow from
general quantitative results for the approximation with linear positive
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operators, as derived in [5, Section 6]. For this purpose we need the defects
of approximation with the functions of the test set, viz.,

dy(x) 1= Bir(e, ; x) — e(x) =0,
d(x) := Bi(e, ; x) — e,(x) =0,
.
dx) = Bir(e, s %) — e,(0) = (1 — (1 — }1) ) & — ).

From the proof of Lemma 2, for dy(x) we get

0 < dy(x) < ——x(l —x) <

-AIR*
=3

Now employing Theorems 6.1 and 6.3 from [5], we obtain the following
estimates:
Suppose fe €10, 1] and f' € Lip,,1, then

Mk,

B ) — ) < M x gy < M (15)
Suppose fe €[0, 1] and fe Lipy,1, then
B x) — fGl < o () (16)

For the proof and for further estimates involving other moduli of smooth-
ness, we refer to [5].
We next state a generalization of the Voronovskaja theorem (cf. [3, p. 22]).

THEOREM 2. Suppose fe €210, 1] and lim,, ,(k,/rn) = 0. Then
hm {Bk"( fix) —f(x)} = %x(l — x) f"(x) uniformly on [0, 11.{17)

Proof. Since each BE» reproduces linear polynomials, without any loss of
generality we restrict ourselves on the subspace

¢210,1) := {fe €@[0, 1] f(0) = 0 = F (1)},

which is a normed linear space equipped with the norm ¢(f) :={f" {l» .
We introduce operators T,,: €¢'[0, 1] — €0, 11 (n € N) defining Tﬁ fi=
(nfk){BEinf — fiforne Nand T, f := gf”, where g(x) = 3x(1 — x) (x € [0, 1]).
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Regarding T, as linear operators from €[0, 1] with the norm ¢ to %[0, 1]
with the supremum norm, we try to estimate the associated operator norms.
Putting fe €P[0, 11 and || f” ||, < 1, we immediately find | T,(f; x)] < 3,
and (15) with M =1 yields | T,(f: x)| < } for ne N. Hence, the operator
norms are uniformly bounded by . Due to the theorem of Weierstrass, the
polynomials in {0, 1] form a dense subspace with respect to the norm g.
But for polynomials, we have lim,, ., T,/ = T,/ withrespect to the supremum
norm on %[0, 11, on account of (5"). Thus, arguing as in the proof of the
theorem of Banach and Steinhaus, we get the assertion lim,., 7,/ = T,f
for each fe €[0, 11. |

Finally in an analogous manner, we shall treat the case lim,, . (k,/n) = 0.
Again applying a Korovkin type theorem of Karlin and Ziegler [I,
Theorem 1] and using the test set {¢, , e; , ey}, one obtains for all fe F[0, 1]

lim Bf"f = B,f  uniformly on [0, 1].

100

In order to estimate the quality of the approximation Bf»f — B.f, we
again shall apply general quantitative results, derived by the author in [5].
The defects of approximation with the functions of the test set are

d(x) := Bl"(e, ; x) — B,(e,; x) =0,
d(x) := Bir(e, ; x) — By(e, ; x) = 0,

dy(x) := Bl"(e, ; x) — B,(e,; x) = (1 — %)km x(x' — 1)

Employing Theorems 6.2 and 6.4 from [5], one obtains the followmg
estimates:
Suppose fe P[0, 1] and f” € Lipy,1, then

n M Ly
Fnf £+ _ — _ —
B0 — B <M (1= s -0 <H(1-3) " a9
Suppose fe €0, 1] and f & Lip,,1, then
1\Fn M
Betrin) — B0 <2m (1- 5 -0 <2 (11" a9
To state Theorem 3 parallel with Theorem 2, we need the class

210, 1] : = {f < Z[0, 11| £'(0) and f'(1) exist}.
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THEOREM 3. Suppose fe €[0, 1] and lim,,...(k,/n) = co. Then

tim (1 —2) (B %) — B %)

= 6x(1 — x) Hlf(t) dt __Ji@L‘:iz_“_f_(_Q uniformly on {0, 11.
’ (20)

Proof. Again we may restrict ourselves to the subspace
Bol0, 1] :={f e €I0, 11| f(0) = 0 =f(1)}.
We must show that for all fe %,[0, 1]

I &y, i
lim (1 — E) BE(fi %) = 6x(1 — x) f f()dt  uniformly on [0, 1].

) v el

To each fe %,[0, 1], there corresponds the function f defined by

£(t) 1= £/0) for =20,
— Y5 fororeo,

= —f'(1) for ¢ =1.

Since f(0) = 0 = f(1) and £ is differentiable at 0 and 1, f is continuous on
[0, 1], and therefore p(f) :== |[fl» exists, which is readily proved to be a
norm on the space %,[0, 1]. We introduce operators T),: Z,[0, 1] — %10, 1]
(ne Ny, n % 1) defining

1y~

T.f:= (1——;) Birf for n>2

and
Tf:= ([ 0 d) e

where g(x) = 6x(1 — x) (x [0, 1]). Regarding 7, as linear operators from
%,l0, 11 with the norm p to €10, 1] with the supremum norm, we try to
estimate the associated operator norms. Putting fe %[0, 1] and ||/, < !,
we have | f(#)] < #(1 —¢) for all 0, 1]. Applying the positive operator
BE» yields

2

| Bi(f; x)) < (1 — i—) "x(1—x) forall xelo,1]
and therefore {| T,/ [l.. <X %. Also we have || Tof . < .

640/29/4-6
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Thus the operator norms are uniformly bounded by . Now arguing as in
the proof of Theorem 2, we obtain the assertion. ||

We note that for f e €®[0, 1] (20) can be written in the form

Ky, '
lim (1~ 3) " (BYG: %) ~ B 0}
- -21—x(1 —x) f Y6101 — 1) 77(0) . @n

Since |, 3 6t(1 — t) dt = 1, the integral in (21) is a weighted mean of the second
derivative.

To conclude this paper, we make a remark concerning saturation.

For a function f'e #®[0, 1] in the case lim,,_(k,/n) = 0,

lim = {B(fs %) — f(x)} = O

entails '€ 2, and BE+f = ffor all n € N, by virtue of Theorem 2. In contrast
to this, let fe %[0, 1] and (k,)..n be a sequence with lim, . .(k,/n) = co.
Then

._]cn

fim (1 —3) 7 (B(f x) — B(fi 0} =0

n—>0

entails only f‘l, @) dt = L[ (@©O) + f(1)), and the example of the function
f(0) = x(x — $)(x — 1) shows that Bi+f + B, f for infinitely many # is still
possible.

Remarks

1. Theorem 3 is contained in the dissertation [5] of the author.

2. H. J. Rausch, Dortmund, has independently found the polynomials p,
to be an orthogonal set with respect to some inner product.

3. Similar results concerning Kantorovi¢ operators will be published in a
forthcoming paper.
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